Regioselective ${}^{12}CO/{}^{13}CO$ exchange activity of a mixed-valent Fe(II)Fe(I) model of the H_{ox} state of [FeFe]-hydrogenase[†]

Christine M. Thomas, Tianbiao Liu, Michael B. Hall and Marcetta Y. Darensbourg*

Received (in Berkeley, CA, USA) 20th December 2007, Accepted 23rd January 2008 First published as an Advance Article on the web 20th February 2008 DOI: 10.1039/b719559a

A mixed-valent Fe(1)Fe(1) model of the H_{ox} state of [FeFe]hydrogenase is shown, under certain conditions, to exhibit regioselective ${}^{12}CO/{}^{13}CO$ exchange activity similar to that observed for H_{ox} .

The metalloenzyme [FeFe]-H₂ase, which catalyzes the reversible reduction of protons to form dihydrogen ($2H^+ + 2e^- \leftrightarrow$ H_2),¹ has been characterized in several redox states including the diamagnetic H_{red} state and the paramagnetic $S = 1/2 H_{ox}$ state.² The magnetism of H_{ox} , the active oxidized state, is ascribed to mixed valency in the 2-iron subsite of the hydrogen-producing or H-cluster (Scheme 1), {[2Fe][4Fe4S]}_H, for which oxidation state assignments are now accepted as Fe^IFe^{II}.³ Although a number of small molecule models of [2Fe]_H have been reported, most have been based on the symmetrical $Fe^{I}Fe^{I}$ complex (µ-pdt)[Fe(CO)_3]_2 (pdt = 1,3propanedithiolate)⁴ or Fe^{II}Fe^{II} derivatives of it, e.g., $(\mu$ -H)[Fe(CO)₂L]₂⁺.⁵ Mixed-valent Fe^{II}Fe^I models of H_{ox} were unknown until recently when the groups of Darensbourg⁶ and Rauchfuss⁷ reported that one-electron oxidation of $(PMe_3)(CO)_2Fe(\mu-pdt)Fe(CO)_2(IMes)$ (1, IMes = 1,3bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and (PMe₃)- $(CO)_2Fe(\mu-edt)Fe(CO)(dppv)$ (edt = 1,2-ethanedithiolate, dppv = $cis-1, 2-C_2H_2(PPh_2)_2$), respectively, in non-coordinating solvent (CH₂Cl₂) leads to moderately stable cationic Fe^{II}Fe^I complexes (Scheme 2).

The structural characteristics of these mixed-valent complexes are quite similar to those of the 2-iron subsite of the H-cluster, featuring a semi-bridging CO ligand and an open terminal coordination site on one iron. Computational studies of $(PMe_3)(CO)_2Fe(\mu-pdt)(\mu-CO)Fe(CO)(IMes)^+$ (1⁺) have shown that the unpaired spin density lies almost entirely on the "rotated" IMes-substituted Fe_B center in an orbital that is pointed directly into an open coordination site, from which we conclude oxidation states of +1 on Fe_B, and +2 on the PMe₃bearing Fe_A.⁸ This oxidation state assignment is consistent with that suggested by computations on H_{ox} models, namely that the "rotated" distal Fe (Fe_d) is in the +1 oxidation state, while the proximal Fe (Fe_p) is in the +2 state.⁹

Radical promotions, particularly in exchange of CO ligands in 17-electron mononuclear complexes, are a part of classical mechanistic organometallic chemistry.¹⁰ That these processes are also involved in the bioorganometallic chemistry of the [FeFe]-H₂ase active site may be inferred from the extensive studies of Albracht and co-workers on the reactivity of [FeFe]-H₂ase from Desulfovibrio desulfuricans towards CO ligand exchange, monitored by IR spectroscopy.¹¹ In the absence of light, the active enzyme H_{ox} reacts readily with¹²CO or ¹³CO to form a CO-inhibited state, $H_{ox}^{-12}CO$ or $H_{ox}^{-13}CO$, respectively (Scheme 1). Although prolonged illumination of the enzyme in the H_{ox}^{-12} CO state produces no detectable effects in the IR spectrum, illumination of the labeled H_{ox} -¹³CO in the presence of extrinsic ¹³CO leads to regioselective exchange with the intrinsic CO's in the bridging and terminal positions on Fe_d. In view of the structural and electronic similarity of 1⁺ to Hox, we were curious to ascertain whether the model complex showed such a stepwise and regioselective reaction with added ¹³CO as that observed for H_{ox}. Herein, we report the reactivity of 1^+ towards added ¹³CO and compare this reactivity with that reported for the enzyme.

The IR spectrum of 1^+ in CH₂Cl₂ features three ν (CO) bands at 2036(s), 1997(s) and 1861(w) cm⁻¹, with a noticeable shoulder to the right of the band at 1997 cm⁻¹ (Fig. 1(A)).⁶ Deconvolution into component bands reveals that the band at 1997 cm⁻¹, in fact, consists of two bands at 1998 and 1985 cm⁻¹ (see ESI[†]). In accordance with results from DFT frequency calculations (see ESI[†]), the bands at 2036 and 1985 can be assigned to the ν (CO)_{sym} and ν (CO)_{asym} of the two terminal CO ligands on the unrotated Fe center (labeled Fe_A in Scheme

Department of Chemistry, Texas A&M University, College Station, TX 77843, USA. E-mail: marcetta@mail.chem.tamu.edu; Fax: +1 979-845-0158; Tel: +1 979-845-5417

 $[\]dagger$ Electronic supplementary information (ESI) available: Detailed experimental procedures, and additional information about the DFT frequency calculations for 1^+ . See DOI: 10.1039/b719559a

2), while the intense band at 1998 corresponds to the terminal CO on the rotated iron center, Fe_B. The less intense band at 1861 cm⁻¹ is attributed to the semi-bridging CO ligand. Unlike H_{ox}, under 1 atm of added CO, a CO-adduct of 1^+ is not detected by IR spectroscopy.[‡] Nevertheless, as CO exchange processes are readily observed with ¹³CO, even at -78 °C, we may reasonably infer that a 19-electron adduct is required as a transient intermediate in the exchange reaction.

Upon exposure to 1 atm of ¹³CO for 15 minutes at -78 °C in CH₂Cl₂ in the absence of light, two new ν (CO) bands appear at 1955 and 1821 cm⁻¹ in the IR spectrum of 1^+ (Fig. 1(A)). The appearance of these bands is concomitant with diminished intensity in the bands at 1997 and 1861 cm^{-1} . After 45 min of exposure to ¹³CO, the IR spectrum remains constant, indicating that further ¹³CO exchange does not occur at -78 °C. The 40 cm⁻¹ shift of the band at 1861 cm⁻¹ to 1821 cm⁻¹ is consistent with ¹³CO exchange into the semi-bridging position (calculated shift = 40 cm^{-1}). The new band that appears at 1955 cm^{-1} is shifted by 42 cm^{-1} from the band at 1997 in the ¹²CO-derivative (calculated shift = 43cm⁻¹). Based on the positions of these new ν (CO) stretches and the persistence of the bands at 2036 and 1997 cm^{-1} , we posit that the exchange of extrinsic ¹³CO with intrinsic ¹²CO in 1^+ occurs at -78 °C with regioselectivity, favoring the terminal and bridging CO ligands on the "rotated" Fe_B.

In an independent experiment to test this hypothesis, 1^+ was exposed to 1 atm ¹³CO for 30 min in CH₂Cl₂ at -78 °C at which time Cp₂Co was added to reduce the partially ¹³CO-labeled complex to a diamagnetic Fe^IFe^I state. The ¹³C NMR spectrum of this species revealed a single downfield ¹³C resonance at 218.6 ppm, corresponding to a single type of ¹³C-labeled CO ligand (Fig. 1(D)).§ The absence of coupling to ³¹P (coupling that is observed in the ¹³C NMR spectrum of natural abundance samples of 1) indicates that only the CO ligands on the IMes side of the molecule have been exchanged with ¹³CO.

This regioselective ¹³CO exchange process is similar to that which has been observed for H_{ox} , albeit with different reaction conditions.¹¹ Thus, complex 1⁺ also undergoes ¹³CO exchange solely into positions accessible to the open coordination site on the "rotated" Fe center. While the exchange process with H_{ox} occurs near room temperature and only under illumination conditions, ¹³CO exchange occurs readily with 1⁺ at low temperature in the absence of light, without the detection of an additional bound CO ligand.

While ¹³CO exchange into all CO positions of H_{ox} has not been observed under any conditions, such complete exchange is observed with 1⁺. Upon warming a solution of 1⁺ under 1 atm of ¹³CO in CH₂Cl₂ to room temperature, a new

Fig. 1 Infrared spectra of (A) 1^+ upon exposure to 13 CO at -78 °C in CH₂Cl₂ (in the dark) after 0 (black), 15 (red) and 45 (blue) min, (B) 1^+ after warming to room temperature under 1 atm of 13 CO, and (C) 13 CO-labeled product obtained *via* treatment of 1^+ with 13 CO at room temperature followed by reduction with Cp₂Co. Carbonyl region of the 13 C NMR spectrum of (D) the regioselectively labeled product obtained by Cp₂Co reduction and (E) the fully 13 CO-labeled product obtained addition of Cp₂Co to the labeled product generated upon exposure of 1^+ to 13 CO-labeled product obtained addition of Cp₂Co to the labeled product generated upon exposure of 1^+ to 13 CO at room temperature.

IR spectrum was obtained with bands at 1990, 1951 and 1820 cm^{-1} (Fig. 1(B)). This new spectrum is consistent with ¹³CO exchange into all CO positions on both Fe centers (calculated: 1992, 1954 and 1821 cm⁻¹). Reduction of this completely ¹³CO-labeled species with Cp₂Co leads to an IR spectrum consistent with what is expected for fully-labeled 1, with bands at 1926, 1888, 1853 and 1840 cm^{-1} (calculated: 1929, 1891, 1856 and 1841 cm⁻¹) (Fig. 1(C)). The ¹³C NMR spectrum of the resulting complex reveals two downfield resonances, a singlet at 218.6 and a doublet at 216.9 ppm, corresponding to ¹³C-labeled CO ligands on the IMes- and PMe₃-substituted Fe centers, respectively (Fig. 1(E)). As an important control experiment, exposure of solutions of the fully ¹³CO-labeled 1^+ to 1 atm of ¹²CO at room temperature leads to complete regeneration of the original IR spectrum of 1^+ (see ESI[†]).

It is noteworthy that the distinctly abiological ligands, PMe_3 and a sterically encumbered *N*-heterocyclic carbene, lead to model complexes that effectively mimic many of the relevant features of the [FeFe]-H₂ase active site: reversible redox, structural, and site-selective CO-exchange chemistry. As this occurs in the absence of the protein superstructure, the ensuing synthetic challenge of responsive second coordination spheres, or abiological matrices, that maintain the high energy, rotated structure in both the Fe^{II}Fe^I and Fe^IFe^I redox states does not appear to be an impossible quest.

We gratefully acknowledge financial support of this work from the National Science Foundation (CHE-0616695 to M. Y. D. and CHE-0518047 to M. B. H.) with contributions from the R. A. Welch Foundation (A-0924 to M. Y. D. and A-0648 to M. B. H.).

Notes and references

‡ Under higher pressures of CO there is evidence for CO-adduct formation. These results will be reported in a subsequent publication. § The natural abundance ¹³C NMR spectrum of **1** features two downfield resonances corresponding to CO ligands, a singlet at 218.6 ppm and a doublet at 216.9 ppm. The coupling to ³¹P in the signal at 216.9 indicates that this peak corresponds to the carbonyl ligands on the PMe₃-substituted Fe_A.

- J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, Science, 1998, 282, 1853; Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps, Structure, 1999, 7, 13; M. Frey, ChemBioChem, 2002, 3, 153.
- 2 Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps and J. W. Peters, *Trends Biochem. Sci.*, 2000, **25**, 138; S. P. J. Albracht, W. Roseboom and E. C. Hatchikian, *J. Biol. Inorg. Chem.*, 2006, **11**, 88.
- 3 C. V. Popescu and E. Münck, J. Am. Chem. Soc., 1999, **121**, 7877; Y. Nicolet, A. L. de Lacey, X. Vernede, V. M. Fernandez, E. C. Hatchikian and J. C. Fontecilla-Camps, J. Am. Chem. Soc., 2001, **123**, 1596; M. Razavet, S. J. Borg, S. J. George, S. P. Best, S. A. Fairhurst and C. J. Pickett, Chem. Commun., 2002, 700.
- 4 D. Seyferth, G. B. Womack, C. M. Archer and J. C. Dewan, Organometallics, 1989, 8, 430; C. Tard, X. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L. S. Wang, G. Sawers and C. J. Pickett, Nature, 2005, 433, 610; E. J. Lyon, I. P. Georgakaki, J. H. Riebenspies and M. Y. Darensbourg, J. Am. Chem. Soc., 2001, 123, 3268; R. Mejia-Rodriguez, D. Chong, J. H. Riebenspies, M. P. Soriaga and M. Y. Darensbourg, J. Am. Chem.

Soc., 2004, **126**, 12004; J. W. Tye, J. Lee, H.-W. Wang, R. Mejia-Rodriguez, J. H. Riebenspies, M. B. Hall and M. Y. Darensbourg, *Inorg. Chem.*, 2005, **44**, 5550; S. Jiang, J. Liu, Y. Shi, Z. Wang, B. Åkermark and L. Sun, *Dalton Trans.*, 2007, 896; D. Morvan, J.-F. Capon, F. Gloaguen, A. Le Goff, M. Marchivie, F. Michaud, P. Schollhammer, J. Talarmin, J.-J. Yahouanc, R. Pichon and N. Karvarec, *Organometallics*, 2007, **26**, 2042.

- 5 J. I. van der Vlugt, T. B. Rauchfuss, C. M. Whaley and S. R. Wilson, J. Am. Chem. Soc., 2005, **127**, 16012; A. K. Justice, G. Zampella, L. De Gioia, T. B. Rauchfuss, J. I. van der Vlugt and S. R. Wilson, Inorg. Chem., 2007, **46**, 1655; X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and M. Y. Darensbourg, J. Am. Chem. Soc., 2001, **123**, 9710; X. Zhao, I. P. Georgakaki, M. L. Mija-Rodriguez, C.-Y. Chiang and M. Y. Darensbourg, Inorg. Chem., 2002, **41**, 3917.
- 6 T. Liu and M. Y. Darensbourg, J. Am. Chem. Soc., 2007, 129, 7008.
- 7 A. K. Justice, T. B. Rauchfuss and S. R. Wilson, *Angew. Chem.*, *Int. Ed.*, 2007, **46**, 6152.
- 8 C. M. Thomas, M. Y. Darensbourg and M. B. Hall, J. Inorg. Biochem., 2007, 101, 1752.
- 9 Z. Cao and M. B. Hall, J. Am. Chem. Soc., 2001, 123, 3734; A. T. Fiedler and T. C. Brunold, Inorg. Chem., 2005, 44, 9322.
- M. Absi-Halabi and T. L. Brown, J. Am. Chem. Soc., 1977, 99, 2982;
 B. H. Byers and T. L. Brown, J. Am. Chem. Soc., 1975, 97, 947;
 T. R. Herrinton and T. L. Brown, J. Am. Chem. Soc., 1985, 107, 5700.
- 11 W. Roseboom, A. L. De Lacey, V. M. Fernandez, E. C. Hatchikian and S. P. J. Albracht, J. Biol. Inorg. Chem., 2006, 11, 102.